
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Regular expressions

© 2023 Arthur Hoskey. All
rights reserved.

Regular Expression
© 2023 Arthur Hoskey. All
rights reserved.

Regular Expression

 Assume you need to check if a string is "acceptable" for a
given circumstance.

 Brute Force Solution
◦ Compile a long list of every possible acceptable string.

◦ Look for the string you are checking for in the list.

 A better solution is to use a regular expression.

 A regular expression defines a set of strings that follow a
pattern.

 Regular Expression Solution
◦ Create a regular expression that defines which strings are acceptable.

◦ Check if the string follows the pattern defined by the regular expression.

 For example, when a user defines a password for a system it
must have certain characteristics.

 A regular expression can be used to define the acceptable
pattern for passwords.

Regular Expression
© 2023 Arthur Hoskey. All
rights reserved.

 Regular expressions are useful for validating input data and
checking to make sure that data is in a certain format.

 The String matches method checks if a string matches a
regular expression.

 matches checks the string against a pattern.

 For example:

String s = "a";

if (s.matches("[a-z]")) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

"[a-z]" is a regular expression. The

[] are used to define a set of

characters to search for. matches

will return true because 'a' is a

character in the given range a-z.

Matches one character in the given

range.

Regular Expression
© 2023 Arthur Hoskey. All
rights reserved.

 More examples:

String s = "A";

if (s.matches("[a-z]")) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

s = "A";

if (s.matches("[a-zA-Z]")) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

False. Capital A does NOT

fall within the range

True. A-Z will

match 'A'

Regular Expression
© 2023 Arthur Hoskey. All
rights reserved.

 Examples with multiple characters:
String s = "ab";

if (s.matches("[a-z]")) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

if (s.matches("[a-z][a-z]")) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

if (s.matches("[a-z][a-z][a-z]")) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

False. The regular expression

expects only 1 character.

True. The regular expression

expects 2 characters and the

characters are within the range.

False. The regular expression

expects 3 characters.

Pattern Matching
© 2023 Arthur Hoskey. All
rights reserved.

 Here are some predefined symbols that search
for a range of characters.

Character Description

. Matches any character.

\w Any word character. A word character includes upper
and lowercase letters, any digit, or the underscore
character.

\W Any nonword character.

\d Any digit.

\D Any nondigit.

\s Any whitespace.

\S Any nonwhitespace.

Regular Expression
© 2023 Arthur Hoskey. All
rights reserved.

 Examples using predefined symbols:

String s = "a";

System.out.printf("%b\n", s.matches("\\w")); // true

System.out.printf("%b\n", s.matches("\\W")); // false

System.out.printf("%b\n", s.matches("\\d")); // false

System.out.printf("%b\n", s.matches("\\D")); // true

s = "a1";

System.out.printf("%b\n", s.matches("\\w\\d")); // true

Note

\\ stands for \ in a string (the

first \ is the escape char)

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 Quantifiers allow you to match multiple occurrences of a
subexpression.

 An * matches 0 or more instances of the preceding
subexpression.

 A + matches 1 or more instances of the preceding
subexpression.

 For example:

String s = "aaa";

System.out.printf("%b\n", s.matches("a*"));

System.out.printf("%b\n", s.matches("a+"));

s = "";

System.out.printf("%b\n", s.matches("a*"));

System.out.printf("%b\n", s.matches("a+"));

Both return

true

true

false (requires

at least 1)

Match 0 or more

occurrences of "a"

Match 1 or more

occurrences of "a"

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 More examples with quantifiers:

s = "12589";

System.out.printf("%b\n", s.matches("\\d*")); // true

s = "12589a";

System.out.printf("%b\n", s.matches("\\d*")); // false

System.out.printf("%b\n", s.matches("\\d*\\w")); // true

Note

\\ stands for \ in a string (the

first \ is the escape char)

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 Quantifiers can be used with [].

 For example:

String s = "acb";

System.out.printf("%b\n", s.matches("[a-c]*"));

s = "acx";

System.out.printf("%b\n", s.matches("[a-c]*"));

System.out.printf("%b\n", s.matches("[a-c]*x"));

true

false (the

'x' is not

in range)

true (the first two

characters match [a-c]*

and 'x' matches 'x')

Match any

number of a, b, c

characters

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 Table of quantifiers.

Character Description

* 0 or more occurrences

+ 1 or more occurrences

? 0 or 1 occurrences

{n} Exactly n occurrences. For example, {1} means one
occurrence, {3} means 3 occurrences and so on…

{n,} At least n occurrences. For example, {3,} means 3 or
more occurrences.

{n,m} Between n and m occurrences. For example, {3,5}
means 3, 4, or 5 occurrences.

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 More quantifier examples:

 For example:

String s = "a";

System.out.printf("%b\n", s.matches("[a-c]?"));

s = "ac";

System.out.printf("%b\n", s.matches("[a-c]?"));

System.out.printf("%b\n", s.matches("[a-c]?[a-c]?"));

True

False. Expects

0 or 1 a-c

True. Expects 0 or 1 a-c

followed by another 0 or 1 a-c

Match 0 or 1 a, b, c

characters

Matches

'a'
Matches

'c'

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 What do the following cause to happen?

String s = "ac";

System.out.printf("1 %b\n", s.matches("ac"));

System.out.printf("2 %b\n", s.matches("ac{2}"));

System.out.printf("3 %b\n", s.matches("[a-c][a-c][a-c]"));

System.out.printf("4 %b\n", s.matches("[a-c]?[a-c]?[a-c]?"));

Quantifiers
© 2023 Arthur Hoskey. All
rights reserved.

 What do the following cause to happen?

String s = "ac";

System.out.printf("1 %b\n", s.matches("ac"));

System.out.printf("2 %b\n", s.matches("ac{2}"));

System.out.printf("3 %b\n", s.matches("[a-c][a-c][a-c]"));

System.out.printf("4 %b\n", s.matches("[a-c]?[a-c]?[a-c]?"));

Answer

1 true

2 false

3 false

4 true

Exact match

Requires exactly 2 occurrences of "c" (like "acc)"

Requires 3 characters that are a-c

? allows 0 or 1 occurrences. The last

[a-c]? can be empty and match.

Capturing Group
© 2023 Arthur Hoskey. All
rights reserved.

 You can check for groups of characters.

 Use () to check for a group of characters.

 This is called a capturing group.

 [ac] is different than (ac).
◦ [ac] means one character that is either an 'a' or 'c'.

◦ (ac) means an 'a' followed by a 'c'

 For example:

String s = "acac";

System.out.printf("%b\n", s.matches("(ac)*"));

Searches for 0 or

more occurrences

of "ac"

The result is true

since ac is

followed by ac

Substitution

 You can replace parts of a string with different characters if
you want.

 replaceAll - Replaces all occurrences of one substring with
another.

 replaceFirst - Replaces the first occurrence of one substring
with another.

 For example:

String s = "a,b,c,";

String rs = s.replaceAll("," , "_");

System.out.printf("%s\n", rs);

© 2023 Arthur Hoskey. All
rights reserved.

Replaces all

occurrences of ',' with '_'

Prints a_b_c_

Substitution

 More substitution examples:

String s, rs;

s = "abcabc";

rs = s.replaceAll("(bc)", "xy");

System.out.printf("%s -> %s\n", s, rs);

s = "abcabc";

rs = s.replaceFirst("(bc)", "xy");

System.out.printf("%s -> %s\n", s, rs);

© 2023 Arthur Hoskey. All
rights reserved.

Replaces all occurrences

of "bc" with "xy"

Resulting string

is: axyaxy

Resulting string

is: axyabc

End of Slides

 End of slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Regular Expression
	Slide 4: Regular Expression
	Slide 5: Regular Expression
	Slide 6: Regular Expression
	Slide 7: Pattern Matching
	Slide 8: Regular Expression
	Slide 9: Quantifiers
	Slide 10: Quantifiers
	Slide 11: Quantifiers
	Slide 12: Quantifiers
	Slide 13: Quantifiers
	Slide 14: Quantifiers
	Slide 15: Quantifiers
	Slide 16: Capturing Group
	Slide 17: Substitution
	Slide 18: Substitution
	Slide 19: End of Slides

