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Today’s Lecture

 Regular expressions
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Regular Expression

 Assume you need to check if a string is "acceptable" for a 
given circumstance.

 Brute Force Solution
◦ Compile a long list of every possible acceptable string. 

◦ Look for the string you are checking for in the list.

 A better solution is to use a regular expression.

 A regular expression defines a set of strings that follow a 
pattern.

 Regular Expression Solution
◦ Create a regular expression that defines which strings are acceptable.

◦ Check if the string follows the pattern defined by the regular expression.

 For example, when a user defines a password for a system it 
must have certain characteristics.

 A regular expression can be used to define the acceptable 
pattern for passwords.



Regular Expression
© 2023 Arthur Hoskey. All 
rights reserved.

 Regular expressions are useful for validating input data and 
checking to make sure that data is in a certain format.

 The String matches method checks if a string matches a 
regular expression.

 matches checks the string against a pattern.

 For example:

String s = "a";

if ( s.matches("[a-z]") ) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

"[a-z]" is a regular expression. The 

[ ] are used to define a set of 

characters to search for. matches

will return true because 'a' is a 

character in the given range a-z.

Matches one character in the given 

range.
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 More examples:

String s = "A";

if ( s.matches("[a-z]") ) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

s = "A";

if ( s.matches("[a-zA-Z]") ) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

False. Capital A does NOT 

fall within the range

True. A-Z will 

match 'A'
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 Examples with multiple characters:
String s = "ab";

if ( s.matches("[a-z]") ) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

if ( s.matches("[a-z][a-z]") ) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

if ( s.matches("[a-z][a-z][a-z]") ) {

System.out.println("Matches");

} else {

System.out.println("Does NOT match");

}

False. The regular expression 

expects only 1 character.

True. The regular expression 

expects 2 characters and the 

characters are within the range.

False. The regular expression 

expects 3 characters.
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 Here are some predefined symbols that search 
for a range of characters.

Character Description

. Matches any character.

\w Any word character. A word character includes upper 
and lowercase letters, any digit, or the underscore 
character.

\W Any nonword character.

\d Any digit.

\D Any nondigit.

\s Any whitespace.

\S Any nonwhitespace.
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 Examples using predefined symbols:

String s = "a";

System.out.printf("%b\n", s.matches("\\w") ); // true

System.out.printf("%b\n", s.matches("\\W") ); // false

System.out.printf("%b\n", s.matches("\\d") );  // false

System.out.printf("%b\n", s.matches("\\D") );  // true

s = "a1";

System.out.printf("%b\n", s.matches("\\w\\d") ); // true

Note

\\ stands for \ in a string (the 

first \ is the escape char)
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 Quantifiers allow you to match multiple occurrences of a 
subexpression.

 An * matches 0 or more instances of the preceding 
subexpression.

 A + matches 1 or more instances of the preceding 
subexpression.

 For example:

String s = "aaa";

System.out.printf("%b\n", s.matches("a*") );

System.out.printf("%b\n", s.matches("a+") );

s = "";

System.out.printf("%b\n", s.matches("a*") );

System.out.printf("%b\n", s.matches("a+") );

Both return 

true

true

false (requires 

at least 1)

Match 0 or more 

occurrences of "a"

Match 1 or more 

occurrences of "a"
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 More examples with quantifiers:

s = "12589";

System.out.printf("%b\n", s.matches("\\d*") ); // true

s = "12589a";

System.out.printf("%b\n", s.matches("\\d*") ); // false

System.out.printf("%b\n", s.matches("\\d*\\w") ); // true

Note

\\ stands for \ in a string (the 

first \ is the escape char)
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 Quantifiers can be used with [ ].

 For example:

String s = "acb";

System.out.printf("%b\n", s.matches("[a-c]*") );

s = "acx";

System.out.printf("%b\n", s.matches("[a-c]*") );

System.out.printf("%b\n", s.matches("[a-c]*x") );

true

false (the 

'x' is not 

in range)

true (the first two 

characters match [a-c]* 

and 'x' matches 'x')

Match any 

number of a, b, c 

characters
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 Table of quantifiers.

Character Description

* 0 or more occurrences

+ 1 or more occurrences

? 0 or 1 occurrences

{n} Exactly n occurrences. For example, {1} means one 
occurrence, {3} means 3 occurrences and so on…

{n,} At least n occurrences. For example, {3,} means 3 or 
more occurrences.

{n,m} Between n and m occurrences. For example, {3,5} 
means 3, 4, or 5 occurrences.
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 More quantifier examples:

 For example:

String s = "a";

System.out.printf("%b\n", s.matches("[a-c]?") );

s = "ac";

System.out.printf("%b\n", s.matches("[a-c]?") );

System.out.printf("%b\n", s.matches("[a-c]?[a-c]?") );

True

False. Expects 

0 or 1 a-c

True. Expects 0 or 1 a-c 

followed by another 0 or 1 a-c

Match 0 or 1 a, b, c 

characters

Matches 

'a'
Matches 

'c'
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 What do the following cause to happen?

String s = "ac";

System.out.printf("1 %b\n", s.matches("ac") );

System.out.printf("2 %b\n", s.matches("ac{2}") );

System.out.printf("3 %b\n", s.matches("[a-c][a-c][a-c]") );

System.out.printf("4 %b\n", s.matches("[a-c]?[a-c]?[a-c]?") );
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 What do the following cause to happen?

String s = "ac";

System.out.printf("1 %b\n", s.matches("ac") );

System.out.printf("2 %b\n", s.matches("ac{2}") );

System.out.printf("3 %b\n", s.matches("[a-c][a-c][a-c]") );

System.out.printf("4 %b\n", s.matches("[a-c]?[a-c]?[a-c]?") );

Answer

1 true   

2 false

3 false

4 true

Exact match

Requires exactly 2 occurrences of "c" (like "acc)"

Requires 3 characters that are a-c

? allows 0 or 1 occurrences. The last 

[a-c]? can be empty and match.
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 You can check for groups of characters.

 Use ( ) to check for a group of characters.

 This is called a capturing group.

 [ac] is different than (ac). 
◦ [ac] means one character that is either an 'a' or 'c'.

◦ (ac) means an 'a' followed by a 'c'

 For example:

String s = "acac";

System.out.printf("%b\n", s.matches("(ac)*") );

Searches for 0 or 

more occurrences 

of "ac"

The result is true 

since ac is 

followed by ac



Substitution

 You can replace parts of a string with different characters if 
you want.

 replaceAll - Replaces all occurrences of one substring with 
another.

 replaceFirst - Replaces the first occurrence of one substring 
with another.

 For example:

String s = "a,b,c,";

String rs = s.replaceAll( "," ,  "_");

System.out.printf("%s\n", rs );
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Replaces all 

occurrences of ',' with '_'

Prints a_b_c_



Substitution

 More substitution examples:

String s, rs;

s = "abcabc";

rs = s.replaceAll("(bc)", "xy");

System.out.printf("%s -> %s\n", s, rs);

s = "abcabc";

rs = s.replaceFirst("(bc)", "xy");

System.out.printf("%s -> %s\n", s, rs);
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Replaces all occurrences 

of "bc" with "xy"

Resulting string 

is: axyaxy

Resulting string 

is: axyabc



End of Slides

 End of slides
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